Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds.

نویسندگان

  • Gregory J Crowther
  • Alberto J Napuli
  • James H Gilligan
  • Kerstin Gagaring
  • Rachel Borboa
  • Carolyn Francek
  • Zhong Chen
  • Eleanor F Dagostino
  • Justin B Stockmyer
  • Yu Wang
  • Philip P Rodenbough
  • Lisa J Castaneda
  • David J Leibly
  • Janhavi Bhandari
  • Michael H Gelb
  • Achim Brinker
  • Ingo H Engels
  • Jennifer Taylor
  • Arnab K Chatterjee
  • Pascal Fantauzzi
  • Richard J Glynne
  • Wesley C Van Voorhis
  • Kelli L Kuhen
چکیده

The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25μM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimalarial activities of novel synthetic cysteine protease inhibitors.

Among promising new targets for antimalarial chemotherapy are the cysteine protease hemoglobinases falcipain-2 and falcipain-3. We evaluated the activities of synthetic peptidyl aldehyde and alpha-ketoamide cysteine protease inhibitors against these proteases, against cultured Plasmodium falciparum parasites, and in a murine malaria model. Optimized compounds inhibited falcipain-2 and falcipain...

متن کامل

Design and Docking Study of Some Pyrimidine derivatives as Antimalarial Agents

Background and Aim: According to the latest estimate published by the World Health Organization in 2017, there are 219 million malaria cases and 435,000 deaths. With the emergence of drug-resistant strains in malaria, there is a need for new drug targets every time. In this study, the design and docking study of the pyrimidine derivatives for inhibiting Methionine aminopeptidase1B enzyme (Metap...

متن کامل

Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review

Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resist...

متن کامل

Potent antimalarial activity of histone deacetylase inhibitor analogues.

The malaria parasite Plasmodium falciparum has at least five putative histone deacetylase (HDAC) enzymes, which have been proposed as new antimalarial drug targets and may play roles in regulating gene transcription, like the better-known and more intensively studied human HDACs (hHDACs). Fourteen new compounds derived from l-cysteine or 2-aminosuberic acid were designed to inhibit P. falciparu...

متن کامل

Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds

Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of gluco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 175 1  شماره 

صفحات  -

تاریخ انتشار 2011